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Abstract

— The parametric instability growth rate of ion acoustic and Langmuir
waves, driven unstable by two uniform pumps near the Bohm-Gross frequency, is
calculated as a function of pump amplitudes and frequencies. Two instability
mechanisms can be identified: one corresponds to the usual, single pump
parametric instabilities (decay and oscillating two stream) while the other
is similar to that found in the Mathieu equation. The interaction between
these two mechanisms results in a non-monotonic dependence of the growth rate
on the pump amplitudes and frequencies: both cancellation and enhancement are
obtained for various values of the parameters. An analytic study of the

relevant dispersion relation using Hill's method is complemented by numerical

studies in both the frequency and time domains.
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INTRODUCT LON
The growth rates of Langmuir and ion acoustic waves driven unstable hy a
high frequency uniform electric field Eq(t) = Ejcoswjt + Ejpcoswyt in a uniform

unmagnetized plasma are calculated for "pump” frequencies w; and wy close to
the Bohm-Gross frequency wy = (wpz + 3Tek2/m)1/2, with the difference fre-
quency A = wy - w) being of order of the ion acoustic frequency Q) = kcg.
While earlier work on this problem1 considered the threshold for instability,
i.e. the minimum value of (E;2 + E22) required to amplify a noise signal, we
examine here the growth rate as a function of w), wpy, B} and Ep. Experimental
observations on both experimental and ionospheric plasmas2 have shown a com-
plicated dependence of the wave amplitudes on pump frequencies. Although most
steady-state experiments sample the nonlinearly saturated state of the insta-
bility, it is important to determine the properties of the early linear growth
stage. The present work addresses this question and, in addition to providing
the necessary conceptual framework for a future nonlinear saturation theory,
predicts various nontrivial features which may be useful in understanding the
experimental observations. Since most experiments operate well above the
threshold levels, the damping of both Langmuir and lon-acoustic waves is
neglected here; it then suffices to use the warm fluid theory rather than a
kinetic theory model. The calculations can be extended to include damping
terms but at the expense of introducing more parameters.

The characteristics of the usual single pump parametric excitation are
well known. When the frequency matching condition w) - wy = @, 1s satisfied
there is a "decay instability”, consisting of the decay of the pump wave at w)
into a Langmuir wave and an ion acoustic wave, both having wavenumber k. For

any finite pump amplitude E; there is a range of w; around wp + Q for which




the growth rate Yy of the daughter waves is positive. Equivalently, for given
w) in that range, there is a threshold for E;. Of course, when the frequency
matching condition w) = wy + Q) is satisfied exactly, the threshold drops to
zero, when damping is neglected. When w} = uw,, the so-called oscillating
two-stream instability (OTSI) occurs, but here we shall discuss primarily the
decay instability. All of these properties are immediate consequences of the
fourth order differential equation whi:h governs the time evolution of the
spatial Fourier transform of the ion density nj(k, t). Since the coefficients
of this equation are constants, its Laplace transform yields a simple disper-
sion equation, a quadratic in wz, whose solution gives the results stated.
previously.

With two pumps, the coefficients in the differential equation for nj are
not constant. Instead, they become periodic functions of t, with frequency
A = w) - wy, resulting in a differentlal equation which resembles the well-
known Mathieu equation, albeit of higher order. Physically, this Mathieu-like
character arises from the ponderomotive force at the beat frequency A driving
the ion acoustic waves. As might be expected, the solutions of this equation
have properties analogous to those of the Mathieu equation?’qSince the Laplace
transform of this equation leads to an infinite set of coupled equations for
the quantities nj(k, w * £4), where £ is an integer, the dispersion relation
takes the form of the vanishing of an infinite determinant, an equation which
we solve for w using Hill's method.“

The behavior of the resulting solutions can be described in terms of two
separate instability mechanisms, one simflar to the usual single pump paramet-
ric instability, the other analogous to that found in the Mathieu equation.
Specifically, if w] is near wy + Q, if E) exceeds the single pump threshold

Eg and if E) is of order E|, we recover the usual decay instability, except

for certain values of w) where the growth rate y vanishes or is slightly
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enhanced, This is illustrated in Fig., 4 where the real and imaginary parts
of w for the growing wave are plotted as a function of wy for fixed w; and
E] = E3. In the figures, and in subsequent sections, we use the dimensionless

1/2 /
(M/16m)l 4 to characterize

quantities vy = (wy-wy)/Qk and gy = (eEy/Te) (kkp)™
the pump frequencies and amplitudes. Fig. 4 illustrates some general features
ot the equal pump amplitude case with E) = E; = E > Eg. Although v = Im w is
equal to the single pump growth rate for most values of wjy, it vanishes when
Vi + vy =0o0r vy ¥ vy =2 and it is enhanced slightly when vy = v - 2/N,
where N is an integer, or when vy = 0 (corresponding to the OTSI driven by the
second pump). As we explain in more detail in Sec. IV, these results are
representative of cases where the parametric decay instability tends to
dominate the behavior but is modified by the Mathieu-like effects. (Further
details concerning the results shown in Fig. 4 and in the other figures
mentioned in this introductory section are given in Sec, IV.).

If w) is near, but not exactly equal to wy + Q (v = 1) and E{ is below
the single pump threshold Eg corresponding to this value of w;, then only the
Mathieu~like effects can produce instability, as illustrated in Fig. 5a, 5b,
and 5c where E = Ey = E9 is successively increased, but remains below Eg. In
Fig. 5d, where E exceeds Eg, one sees a combination of the two effects: the
single pump decay mechanism dominates for v, far from -1, while the
Mathieu-like effects give enhanced growth near v9 = -1 and zero growth for
finite intervals of v, above and below -1.

For unequal amplitudes, there is a complicated interplay between the
Mathieu and decay mechanisms, the resulting behavior depending on the ratio
E2/E) and also the ratio E;/Eg. If E| < Eg, the decay instability does not

occur (unless vy = 1) but the Mathieu instability appears, as illustrated in




Fig. 6a , the growth rate at first increasing as Ej increases (Fig. 6b), and
eventually decreasing (Fig. 6c). 1If E| is well above Eg, the second pump may
simply modify the decay instability growth rate, as shown in Fig. 7a (details
in Sec. IV) for Ep = E)/2, or it may, for larger Ej, actually suppress the
growth rate entirely over a finite interval of v) between the Mathieu and
decay instability regions as in Fig. 7b.

If, instead of fixing w) and varying w; we keep wy constant and vary W,
we observe a similar interaction of the two instability mechanisms as shown in
Fig. 8. In general a mixture of the two mechanisms is most likely to occur
when v = 1, maximizing the growth rate of the decay instability and,
simultaneously vy = -1 so that vy ~ vy = v = 2 which corresponds to the
strongest Mathieu-like instability. Most of our attention has been focused on
this "mixed regime”.

Since the parameter space (E;, Ep, w), wy) is four dimensional, surveying
it is greatly facilitated by having an approximate solution of the dispersion
equation. Judicious truncation of the infinite determinant yields a simple
approximate dispersion equation (a biquadratic in w) which gives close
agreement with the exact results and also provides a simple means of
understanding the propeties of the solution of the exact dispersion relation
displayed in Figs. 5 through 8. In addition, this approximate dispersion
relation can be used to determine the boundaries of the stable and unstable
regions in the (E), Ej, w, wy) space as illustrated in Fig. 3 for
two-dimensional cross sections (Ej vs. v, for fixed E;, v|; E} vs. v| for
fixed Ej, vy; Ep vs. v; for fixed E; and vy). Although this approximation can
be strictly justified only when v) = =vy = ], it proves to be valid, in fact,

over a fairly broad range of parameter space, as illustrated in Fig. 9
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As an alternative to the Laplace transform approach, we have also solved
the differential equations in the time domain, using numerical integration, a
procedure which avoids the various approximations used in solving the
dispersion relation. Taking the Fourier transform of the solutions for nj(t)
and ng(t) then gives directly the "line shapes” ny(w) and ng(w) which would be
observed experimentally if the nonlinear saturation mechanism were independent
of frequency. Although these quantities can also be calculated from the
solutions of the Laplace transformed problem, that approach would give
spectral peaks corresponding to all roots of the dispersion equation, growing,
decaying, or stable, whereas in the time domain calculation (and in the
experimental situation) the growing waves dominate. The time domain solutions
also show clearly the modulational effects which result from the occurrence of
two unstable roots of the dispersion equation.

The theoretical model used is presented in Sec., II, together with a
derivation of the differential equation for ny(k, t) and a discussion of its
similarity to the Mathieu equation. An exact solution of the frequency domain
equations is given in Sec.IIl, where we also show that a judicious truncation
of the infinite determinant leads to simple expressions for the frequencies
and growth rates and for the boundaries of the stable and unstable regions in
parameter space. The results of these numerical calculations and a
discussion of the various features are presented in Sec. IV, Section V gives

the solutions in the time domain for both growing and stable waves.

Conclusions are presented in Sec. VI,
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11. MODEL EQUATIONS AND DISPERSION RELATION

We consider a uniform, unmagnetized ion-electron plasma with a uniform

“pump” electric field:

Eo(t) = E; coswjt + Eo coswyt (1)

Pump depletion is neglected, so E;| and E, are constant; E; and Ej) are assumed
parallel; and the pump frequencies wj(j = 1, 2) are near the electron plasma

frequency wpe Since we are interested in growth rates well above threshold,

wave damping is neglected.

The fluid equations, for each species, a = e,i,

Mg 4y . (nv)=0 )
] a=a
v
2+ Vg + Vpg/ngmy = qob/my (3)
3t a
are linearized about the oscillating motion due to E,
Ng =Ng + Nigs Py = Poa * Plar Ya = Yoa * Yla* Yoa = 9aBo/Mg
This gives
i L L] 2
nia + 2(¥oa* Mg + (Jpa*VIn1a = VP1a/mg = (da/Madnga"* (E - Ej) (4)

if terms of order V%a are neglected.
Using Poisson's equation; neglecting the zeroth order ion velocity (v,4)
since the ions do not respond to the high frequency field; setting Ty = O

(i.e., taking the limit of large To/Ty); Fourier analyzing in space; and sep-




7
arating the electron density into high frequency (w of order wp) and low fre-

quency parts, Ng = Ngp + ngy, we obtain

g LN,

neh + w& ngp = -ik (Go nag) (%)
2 .
wpe (ngg = ng) + k2Tg ngp/m = 1k (v ngp)g (6)
;;i + mgi njg = mgi Naog (7

Here we have used pg = on,T with ¢ = 3 for the high frequency and 0 = 1 for

the low frequency equation. Also, we set mg = m, my = M, wﬁ = wpg + 3k2Te/m
e and neglect terms of order m/M. Inserting (6) into (7) and approximating
" 2 2 ,, 2 2 2 2 2 _ 2
wpi [ - wpe/(wpe + k Tg/M)] = k'Tg/M = k™ ¢g = O we get
’ . 2
ny + Q nj = —(ike/M)(Egngp)yg (8)
. 2
ngp + Wi ngp = (ike/m)(Eyng) (9)

:
1
|
&

Note that the right hand side of (8) correspords to the usual ponderomotive

force. Finally, a modulational representation
neh = f4(t) exp(-iwpt) + f_(t) exp(iwyt) (10)

where f+ are slowly varying functions, Ift/ftl <K wy, gives the

equations:

32n *

Lyng = = (/D E(DMT) + £,(DA*(D)] abn
at?
A4 o~ (xM/16m)1/2 A (12)
9T
3t (xM/16m)1/2 nga* a3
T




e S

e W e Ay =

where
2 2

A =j31Aj exp (—ivjr), Aj = (ekEJ-/mmp ),

vi = (wj=wy)/Q, x = (kp/k)2, and T = Qyt.
The remainder of the paper is concerned with the properties of the solutions
of (11) through (13). Of course, these equations are only valid for small Xj
since we have dropped terms of order voz.

Before discussing the solution of (11) through (13), we note that solving

(12) and (13) for f+ and substituting the result into tt o.deromotive force
expression on the right side of (10) gives terms of the .nral form A A¥ nj.

(The actual analysis, given later in this section, actu involves differen~

tiating (10) to obtain a sixth order equation for nj; the approximate discus~
sion in this paragraph is only meant to illuminate the physics involved.) If
there Is only a single pump, A A* is constant so the equation for nj has con-
stant coefficients; the only effect is to change the eigenfrequency from
w =1 to a new value which, for pump amplitudes above the decay or OTSI
thresholds, becomes complex. However, with two pumps, A A* contains also
oscillating terms of frequency v = vy - vy and it is this oscillating pondero-
motive force term in the ion density equation of motion which is responsible
for the new effects arising with two pumps.

A direct method of solving these equations is to use the Laplace trans-
form

o
nj(w) = f dt nj(r)exp(iwTt)

o

(where w Is measured in units of Q) which leads to the set of coupled equa-

tions
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Yo(wng (w-v) + X(w)ng(w) + Yy (w)nj(w+v) = I(w) (14)
2
X(w) = w2-1 + J g52v; /(w2=v;2)
j=1
Y, (w) = (V1+V2)8182 (15)
= 2(wtvl)(w$v2)

2 1/72, 2
g5 = x (Mx/lém)  "Xj

Eq. (14) also follows directly from Eq. (25) of Arnush et al.l, derived from
the Vlasov equation, provided we take the fluid limit for the e(k, w) in their
equation, The right hand side of (14) involves the initial conditions on

nj(t) and its derivatives, but we can simply set it equal to zero in finding
the dispersion relation. Thus, vanishing of the determinant D of the coupled

equations (14)

(-1) (-1) (-1) :
Y- X Y,
0y (0) (0)
D = det Yo x vy =0 (16)
(1) (1) (1)
Yo Xy,

yields the dispersion relation, where X{n) = X(w+nw) and similarly for Yi(“).
(Note that the matrix of eq. (16) is tridiagonal.)
Before discussing the solution of (16) we examine the Mathieu-like equa-

tion derived from the system (11) through (13). Differentiating (11) twice

and (12) and (13) once allows us to eliminate £+ and obtain a fourth order
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equation for nj

%) (1) (3) 2) (1Y (D
Sai ~-S ng + (S+H) ny - S ‘ny + (CS24H) ny = O (17)

1/2
where C = (Myx/m) (x/8), the upper script (j) indicates the jth derivative

with respect to T and S and H are periodic functions of vt = (v)~-vy)t:

w
]

Z[Z vy Ajz + Alxz(vl—vz)cosvr]

=
It

2[[Vj3 Ajz + A1A2V1V2(V1+V2)COSVT]

Because of the S2 term in the coefficient of nj, the Laplace transform of
this equation couples nj(w) not only to nj(wtv) but also to nj(wt2v), i.e.
we get a 5 term recursion relation rather than (14). For this reason, it is
more convenient to work instead with a sixth order equation for nj whose
coefficients involve only cosvt and sinvt but not the harmonics of v. This

equation can be obtained by operating on (11) with the two operators

Lj = (d/d1)2 + v;? j=1, 2 (18)
and using Egs. (12) and (13) to simplify the terms on the right side. The
result is

[LiLoL + (glzvle + g22v2L|)] ng =

(19

—(V1+V2) (Elgg) (L,” Ll+{exp(ivr)ni} +L,t Ll°{exp(—1vt)ni}

2

where

L = (d/d1)2 + 1 Lji = (d/dt % ivy) (20)

Of course, the Laplace transform of Eq. (19) gives just Eq. (14).

Equation (19) {s an interesting generalizaton of the Mathieu equation,

which we can write as




v A R -
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33%.+ + g2n cosvt = 0 (21)
T

9
Indeed, the Laplace transform of (21) gives a system of equations identical to
(14) but with X, Y+ replaced by

X(w) = w2 - |
(22)

and an analysis of that system leads to the usual Mathieu stability diagram.

A comparison of (19) and (21) is instructive. If the right side of (21), i.e.
the part with periodic coefficients, vanishes, the dispersion equation reduces
to X(w) = 0, which has only the stable solutions w = *1., On the other hand,
even if the right hand side of Eq. (19), i.e., the part with periodic coeffi-
cients, vanishes, the resulting dispersion equation (14), X(w) = 0, has both
stable and unstable roots. 1Indeed, with g9 = 0 (which makes the right side of
(19) vanish) X(w) = 0 is just the usual dispersion for single pump parametric

instabilities

(02-1) (w2-v,2) + glzvl =0 (23)
This has unstable roots for

8,2 > (vi2-1)2/4v] or 0 < -v < g2 (24)

corresponding to the parametric decay and the OTSI, respectively. More gener-
ally, X(w) = 0 has unstable solutions for given vy, vy {f g1 exceeds certain

threshold levels, This corresponds to one mechanism for instability, which

may be considered as a straightforward extension of the usual parametric in-
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stabilities (decay and OTSI), and is quite different from the situation in the
ordinary Mathien equation, where there is no instablility in absence of the
term with a periodic coefficient.

The second (Mathieu-like) mechanism is evident when g| is below the
threshold for instabilities arising from X(w) = 0, since Eq. (19) for g9 # 0
can still have instabilities due to the terms on the right hand side with
periodic coefficients. This instability mechanism is clearly analogous to
that associated with the Mathieu equation, where instabilities arise only from
the g2 term in (21). In general, for arbitrary g; and go we have the presence

of both instability mechanisms.
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LI[. ANALYSIS OF THE DISPERSION EQUATION

In this section we solve the dispersion equation (15) using Hill's meth-
od. We also discuss an approximation which provides some physical insight and
which proves to be quite accurate in the parameter regime of greatest inter~
est. The approximation is based on an expansion in the quantity g = (g1g2)1/2
which we treat as a small parameter.

For arbitrary g we define a new determinant D obtained by dividing D by
its diagonal elements

- © (n)
D(w) = D(w) I X (w)

D(w) = W1 W (25)

where

(n) (n)
W=y, (w)/X (w)

is of order g2, 1If g is small, we can expand D in powers of g:

- ©  (n) (n+1) 6
D(w) =1 + ) W, (w) W_ (w) +0(g") (26)
)= —00

In the limit g = O, D =1 but D can still vanish, namely if w is a root of

(n)
X (w). For later use we define the quantities r{, i = 1 to 6, as the roots

of X(w), for arbitrary gy and g9,
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X(ri) = rg?2 = 1+ ) gy2vjrgZ-vHl = 0 (27
j

In general, the roots rj have no simple physical significance, but we note the
following properties. 1If g} # 0 and gy = g = 0, then Eq. (27) is a biquadrat-
ic in w whose roots give the usual single pump parametric instabilities as
illustrated in Fig. 1 for g| = .346. (The points A, P, M shown in Fig. 1
are used later in the discussion of Fig. 5.). In the stable region
lVl'll > gy there are two real roots, the ion acoustic mode with w = 1,
and what we may call the pump idler mode, with w = v;. 1If g; and g, are both
non-zero, Eq.(27) is a cubic in w2 whose roots are, for small £jo close to
w2 = 1 (normal ion acoustic modes, present even if gy * 0) and to w? = wlz
and w? = wzz (pump modes or idlers, which have no physical significance in the
limit g5 * 0).

We now consider the roots of 5(w) for small g. Since the second term in
D is of order g4, D can vanish only if one or more of the X(n)(w) is small,
i.e. if (w + nv) is near 1, corresponding to an ion acoustic resonance. Of

(n)

particular interest is the case when two of the X vanish simultaneously,

which can happen, with v # 0, if, for two integers nj, and nj,

w +npv o= w + npv x -] (28)
i.e. if

v = 2/N (29)

where N is an integer. Of special interest is the case of "double resonance”
where one of the terms in D involves the product of two large W factors, e.g.
when

w = ~1 w+v =1 (30)
which requires v = 2, N = 1. The most interesting results are obtained in

this case, which can be understood on physical grounds as follows. From the

differential equation (19) we see that the ions are driven by a ponderomotive
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force of frequency v, so a low frequency wave at w gives rise to another, at fre-
quency w-v. Both waves can be normal modes if w = I, v = 2 so that w -v = -1,
giving the condition of “"double resonance”. For N > 1 this double reso~-
nance cannot occur so the effects of the second pump are less pronounced.
However, the case N = 2, v = ]| is of some interest. A wave at w = ] then
gives rise, through the ponderomotive force, to a wave at w = 1-v = 0, and
while this is not a normal mode, it does correspond to an OTSI mode. The
thresholds for this case are discussed in Arnush et al.l

Having seen where the most interesting effects are likely to occur, we
consider the exact solution of the dispersion equation (15), i.e. without

assuming g small. The determinant D(w) defined by Eq. (25) has the following

properties:

a) D(w + v) = D(w)

- (n)
b) Lim D(w) = ] since lim W (w) =0
w+e wroo ¥
c) D(w) = D(-w) = D*(uw*)
{(n) (n)

Since X (w) vanishes at w = ry = rj + nv where ry are the 6 roots of X(w),

- (n)
D(w) has poles at riy « These will be simple poles provided we avoid the

special v values where ry - ry = pv for some integer p. Then the function

) s = (0) -1
R(w) = B(w) = §  § by plumrg ) (1)

i=]l n=—

- (n)
where bi,n igs the residue of D at r;y , will be analytic in the whole w plane

and since K + 1 as w » », we have K = ], The periodicity of ) implies that
(n) (m)

the residues at r{ and r{ must be the same, i.e. that bj n = bj indepen-

dent of n. Finally,




16
° (n) =1 = -1
Y (w-ry ) =) v‘l[n-(m-ri)/v] = (n/v)cot[n(w-ry)/v] (32)
n=-—o n=-=o0
s0
6
D(w) = 1 + } (bym/v) cot[m(w-rg)/v] (33)
i=]

The symmetry of both D and X under w + -w means that if we arrange the roots

ri so that ri{43 = ~-ry, i = 1,2,3, then bj,q = -b; and the dispersion relation
takes the form
3
D(w) = 1 + Z (by w/v){cot[m(w~ry)/v] ~ cot[n(m+ri)/v]} =0 (34)
i=1

Since (34) gives the dependence of D on w in explicit form, it is easy to de-
termine the roots of D once the by are known as functions of v. Note that the
method fails when v = 0 since the single poles ri(“) converge into a single
point giving rise to an essential singularity. Therefore the neighborhood of
v = 0 is excluded in our numerical calculations, However, v = 0 implies that
both pumps have the same frequency and the corresponding growth rate is expec-
ted to be that of a single coherent pump whose amplitude is the sum of the two
pump amplitudes,
The ry's are poles of D, so the residues, by, are given by
bj = lim D(w)(w-ry) (35)
wrry

These infinite determinants can conveniently be evaluated using iteration:

D+l _ 4 - A n+13n+1,n
D, n+l,n+1 (D /Pp_) (36)

where D, 1s the approximate value of D obtained from an n x n truncation and

an+lsn+ls An,n+ls An+l,n are the elements of the (n+1)th row and column. Al-




P

17

though some of the a, p are singular at w = ry due to the vanishing of X(w)
factors which appear in the denominator, (w—ri)an’m(w) is always tinite,
The iteration scheme converges fairly well; typically, for values of v bigger
than 0.5, 10 iterations suffice to give an accuracy of 0.1%.

The roots of D obtained by this procedure are plotted as functions of the
parameters V), Vy, etc. as discussed, with illustrative examples, in Sec.
IV. To understand the considerable structure which results, the following
approximate treatment of the double resonance case proves helpful. For

v 2 w=1 we have, to order g“, keeping only the largest resonant terms,

D= 1+ W (0-v) W_(0) = 1+ ¥ (w=V) ¥_(0)/X(u=v) X(w) = 0 (37)

This equation, which is equivalent to approximating B by a 2 x 2 determinant,
gives an eighth degree polynomial in w, when rationalized, but it can be re-
duced to a biquadratic in the limit v; = -vp = 1. Since

X(w) = (w2-1) + g12/2(w-v]) = g92/2(wtvy)

X(w=v) = {((0=v)2 - 1} - g12/2(w+vy) + 822/2(w-vy)

Yi(w-v) = Yo(w) = (vi+v3)(g182)/2(w=-vy) (wtvs),
the change of variable

w=v/2 +y (38)

gives a cubic in y2,

(y2-42) (y2-a2) (y2-b2)+(g | 24g2)b(y2+ad) - (g 282 2) vy2~(1/4) (g1 2-532)2 = 0

(39)
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where a = (8§) - 83)/2, b = (&) + §3)/2, § = vy - 1 and §9 = vy + ] are small
quantities in the double resonance regime and d = v/2 + 1, withd = 2 in that
regime, 1If the growth rate y and the shift in the normal mode frequency,
(Rew-1), are much smaller than 1, as is the case for small amplitude pumps,

then |y|2 << d2 for v = 2 and equation (39) becomes

y*-2ay2 + B = 0 (40)
where

A = L (aZub2e(g 245 2)b/a2~(g 2-g,2)v/d?}

27 1 =2 I 72
41)

B = aZb2 + (glz-g22)2/4d2 - (g12+g22)ab/d
From (38) and (40) we have

w = v/2 + [A + (A2-B)}/%)1/? (42)

as a convenient closed form approximation for the roots of D(w) which 1s valid
for v) = -vy = 1 and small values of gj. (Note that (42) gives four roots
since each square root can have either a positive or negative sign.)

The rather complicated dependence of the growth rate on the pump fre-
quencies and amplitudes as determined from the numerical solution of (34) can
be understood in a fairly simple way from an examination of (41) and (42),
which actually provide a good approximation even when §) and 87 are not small,

From (42) we can see that there are two disjoint conditions for instability
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a) B<O (43)

b) B > A2 (44)

and the boundaries between the stable and unstable regions of parameter space
are then determined by the locii B = 0 and B = A2, as shown in Fig, 2., We
first note that the number of unstable roots of (42) varies from 0 to 2
according to the signs of A, B and A2 - B, The various possibilities are sum-
marized in Fig. 2.

We may say that region a) represents the generalized Mathieu instability

since Re w is locked to one half of the (ponderomotive force) driving fre-
quency, v/2, just as in the lowest unstable mode of the usual Mathieu equa-
tion. Similarly, we may consider region b) as the generalization of the

single pump decay instability since in the limit g, + 0, vy *+ -1, we have

B = A2 and (42) reduces to the usual single pump expression

w=v/2%t A2 5 (1w vyt (a-vp? - g1V 32, (45)

172
unstable if g > gg = (l—vl)vl' R

The mapping of the stability boundaries on the physical space of the
parameters can be obtained by examining the surfaces B = 0 and B = A2 which
characterize the different regions of Fig. 2. Since there are four indepen-
dent parameters (vi, vy, gy and gj) 1t is convenient to fix two of these and

plot the curves B = 0 and B = AZ {n the plane of the remaining two parameters,

Examples of such plots are shown in Fig. 3 with the respective regions of

Fig. 2 identified.
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[V, SOLUTIONS OF THE DISPERSION RELATION

In this section we analyze the roots of (34) as functions of the parame-
ters v), vy, E; and Ep. Numerical calculations of both growth rates and fre-
quencies, are presented and the approximate form of the dispersion equation
(42) is used to analyze the resulting structure,

The new effects resulting form the presence of the second pump are most
evident at resonance, i.e., when one of the pump frequencies differs from the
Bohm~Gross frequency by approximately Q, the ion acoustic frequency. We
shall therefore consider two cases:

i) vy = 1, V5 arbitrary

ii) v = -1, v| arbitrary

We begin with the case of equal amplitude pumps g) = gy = g, with g well
ahove the single pump decay instability threshold, g4 = (vl—l)vl‘l/2 = §). Of
the various roots of (34) we select the ion acoustic wave, i.e., the one with
Y = Im w > 0 which has Re w = 1 (in units of Q). 1In Fig. 4 we show y and
Re w as a function of vy for v| = 1.1 and g| = gy = g = 0.346. (The region
vy = v; is excluded from the plot for the reason stated in Sec. IIL. Note
that the growth rate increases as we approach vy=vi, consistent with
our expectation that y+2Yg at that point).

For most values of vy, we see that y = y, = [vl(gz-gg)]l/z, the single
pump decay instability growth rate, i.e., the second pump has little effect.
The enhancement of Y when vy = 0 is not unexpected, since the second pump
could then produce the oscillating two stream instabiltiy (OTSI) even in the

absence of the first pump. Actually, close inspection of Fig. 4 shows that Yy
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is enhanced for both positive and negative values of vy, whereas the usual
OTS! instability arises only for a pump frequency below the Bohm-Gross fre-
quency. However, the most striking feature of Fig. 4 is the total supression
of the instability for vy = -v; and vy = $(2-v;), arising from the interaction
between the two mechanisms, parametric and Mathieu-like, discussed in Sec. I,
An understanding of the structure of Fig. 4 can be obtained from the ap-
proximate solution of (34) given by (42), For equal pump powers not too far
above threshold, A is positive, since §;, 69 and g| = go = g are all small
quantities of the same order and hence the (a2 + bz) term in A dominates.
Therefore, condition (43) for the generalized Mathieu instability becomes,

with d = 2,

(ab)2 - gzab >0 (46)
which is equivalent to

0 < 6% -85 < 4g’ (47)

In Fig. 4, g > §) so the right half of (47) is automatically satisfied. The
condition |83] < |&;| just corresponds to the region between the nulls marked
1 and 2 in Fig. 4. In this region, we find that, as expected from (42), Re
is locked to v/2. At the ends of that interval we have §; = %§,, i.e.,
vy = - vy or b=20
(48)

Vi = vy =2 or a =20

Since (48) is independent of the pump amplitude, these are stable
points of the system and can not be excited even if the pump amplitude is in-

creased (subject, of course, to the small pump amplitude assumption which un-

v e e eV e N w0 e o
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derlies our whole analysis).

We note that the nulls at | and 2 in Fig. 4 correspond to a certain
symmetry in the frequency spectrum, For v) = -vj, the pumps are symmetrical-
ly placed above and below the Bohm-Gross frequency, resulting in a cancella-
tion similar to that which occurs if a harmonic oscillator 1s driven by equal
amplitude pumps symmetrically located above and below its resonant frequency.
The existence of this null has also been noted by Fejer et al.s For
V] = v9 = 2, corresponding to the null at 2, the symmetry manifests itself
at low trequencies, as follows, A low frequency fluctuation, at frequency w,
beating with the pump at w) gives rise to a sideband at w; - w, the interac-
tion being strongest when the sideband is resonant, i.e., when w; - w = wy or
w = vy, The sideband at w| - w, beating with the second pump, produces a low
frequency oscillation at (w) - w) — wyp = Vv - w =V - v} = -vy, DNouble reso-
nance occurs when both of the low frequency signals are near the ion acoustic
frequency, Qk, i.e. v * -vy = I, When v| - vy = 2, we have v| -1 =1 - (-vj),
i.e., the two low frequency signals are located symmetrically above and below
flx and there is a cancellation. This same situation arises when both pumps
are above the Bohm-Gross frequency, vi{ = vy = 1 and vy + vy = 2 or
vi =1 =1 - vy, The resulting cancellation accounts for the null denoted as
3 in Fig. 4.

While the nulls in Fig. 4 arise from these symmetries, the first two be-
ing associated with the double resonance condition N = 1, v = 2, the slight
enhancements in Yy correspond to other values of N. Those for N = 2 and N = -|
are clearly visible (at vp = v| = 1 and vy = v} + 2, respectively) and the
N = 3 peak (at vy = v|-2/3) is barely visible on the scale used for display.

Higher order interactions (N > 3 and N < -1) would appear for larger values of
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g. As a final comment on this equal amplitude case, we note that if the first
pump is exactly on resonance, vy = l, then a = -b; the two conditions (48) are
the same; the two nulls at 1 and 2 coalesce; and there is no Mathieu-like be-~-
havior.

In discussing other values of the parameters, we shall concentrate on t'.e
N = 1 (double resonance) case, where the most striking effects occur. Also,
we will plot Re w and v for all of the four modes with Re w of order 1. 1In
general, we plot only the positive Yy values but, of course, for each root of
the dispersion equation with Yy > 0 there is another with imaginary part equal
to ~y. If we keep the pump amplitudes equal, g) = g = g but put g below the
parametric instability threshold gg for the first pump acting alone, we obtain
the results shown in Figs. 5a, 5b and 5¢c. In Fig. 5a, g < §}/2 and it follows

from (47) that the range of instability 6, is not the whole interval

-6 < 85 € §; as in Fig.4 but instead only the portion

2 2,172
(817 - 4g7) "7 < |8y < 8 (49)

This corresponds to the two growth regions in Fig., 5a. 1In Figs. Sb and 5c,
§1/2 < g < 8§y, 1In this case, the instability region for &, expands to the
whole interval (-6, §;). Finally, in Fig. 5d, g > §;, we obtain the Mathieu
instability on the interval (-8;, §;) and the decay instability when v, is far
from -1. The behavior of both y and Re w in these figures is consistent with
the characterization of the roots of (40) given in Fig. 2. In Fig. 5a as we
move from left to right we are first in region IV of Fig. 2, then in regions

I, v, I and IV. In Figs. 5b and 5c we have that the central feature corres-

ponds to region I and the sides to region IV. 1in Fig. 5d, again moving from

left to right we go through regions 11I, IV, I, IV and IIIL.
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An alternative view of the structure of Fig. 5 is as follows. For Figs.

5a, 5b and 5c where g) < gg (for a given value of v|) there would be, in
absence of the second pump, two stable modes, the ion acoustic, with w = |
(point A in Fig. 1) and the "pump" mode, with w > v (point P in Fig. 1). The
ponderomotive force with frequency v may interact with either of these, insta-
bility occuring if the beat wave resulting from this interaction is also
resonant, This occurs, for example, when v - v = vy, L.e. for vy = -v;, cor-
responding to the left hand bump in Fig. 5a. Similarly, v -1 = | or

Vo = v) - 2 corresponds to the right hand bump. As g increases, point M in
Fig. 1 moves closer to v| (since the width of the instability region is pro-
portional to g) and the ion acoustic and pump mode can be coupled through the
action of the ponderomotive force, resulting in the y variation shown in

Figs. 5b and 5c. Finally, for g > g5 point M has moved to the right of vy,
giving growth for most values of vy save for the interval where the Mathieu
mechanism dominates and is stabilizing (Fig. 5d).

For unequal pump amplitudes, we find similar dependences of the roots of
(34). If the amplitude of the first pump is below the single pump instability
threshold, g} < §;, we obtain the results shown in Fig. 6 for
g] = .075. For g9 = g;/3 (Fig. 6a), there are two disjoint regions of growth
within the interval (83| < [6)| whereas for larger g; these merge into a
single region (Figs. 6b and 6¢). To understand this structure, we note that
since g} < §;, we have A > 0 and the condition for the Mathieu instabhility is

just (43), which can be written in the form
2 2 2 2 2
8§ -(g) +8p) <6y <& - (g1 - 82 (50)

I[f gp < 8] - g}, (50) predicts two disjoint instability regions, as in
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Fig. 6a. 1If §) - gy < gy < &; + gy, then the left half of (50) is automati-
cally satisfied and there is only one region of instability, whose boundaries
are within the interval |83 < |8)], as in Figs. 6b and 6c. 1If gy > &) + g1,
then (50) cannot be satisfied and there is no Mathieu instability, i.e., we
have crossed from region I in Fig. 2 to region IV. The qualitative view given
previously for Fig. 5 also applies to the conditions of Fig. 6.

If, instead, the first pump amplitude is above the single pump decay
threshold, g > 61, then A may be either positive or negative. In Fig. 7a,
where gy = 1.7 8; and gy = g|/2 we pass from region I of Fig. 2, when Vo is
near -1, through region I1 (A < 0) and eventually to region 111, at either
side of vo==1. Although the decay instability growth rate is somewhat modified
by the presence of ehe second pump, g2/g] is so small that there is no region
of vy where the instability is completely suppressed. If g7 > g1, then it
follows directly from (41) that A > 0 and instability can occur only in re-
gions I and III of Fig. 2. This situation is illustrated in Fig. 7b, where
g1 = 1.7 6] as in Fig. 7a but g9 = 1.1 g;. For these values, (50) predicts a
single instability region around vy = -1, as seen in Fig. 7b, since
B2 < 86 + g1, A4s vy decreases, we pass from region 1 through the stable re-
gion 1V and eventually come to the decay instability (region III) near vy = ~1.5
(We pass through these same regions as vy increases from ~1 to -0.5).

We sce from (50) that as the second pump amplitude increases, we eventu-
ally supress the Mathieu instability since for gy > g, + §; the condition B < 0
cannot bhe satisfied. Thus, as g2 increases from 0 to g; + 61, the maximum
nrowth rate for the Mathieu instability (which occurs at 85 = 0) for given )

and g, increases, reaches an optimum, and then decreases, as shown in Fig. 6.

We consider here only the regime v{ > 0, i.e., we study the modification
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of the decay instabllity duae to the first pump. Some typical results are
plotted in Fig. 8. For comparison the single pump case (g2 = 0) is shown in
Fig. 1. In Figs. B8a and 8b the pump amplitudes are equal, g) = g2 = g = .346
so A > 0 and instability can arise only from regions 1 and IIU of Fig. 2. For

vy = -1, we have
2,2
B = 6,°(81° - 4g°)/16 (51)

hence the Mathieu instability occurs over the interval |61| < 2g, as shown in
Fig. 8a. The vanishing of the growth rate at vy = 1 is a consequence of the
symmetrical location of the pumps above and below the Bohm~Gross frequency, as
discussed earlier. When vy is displaced from -1, e.g., vy = -1.2 as in

Fig. 8b, we have

B o= (8)° - 85°)(8)° - 85° = 4g)/16 (52)
Thus the Mathieu instability (associated with B < 0) occurs for

617 - 28° < 850 < 8,7 (53)

This corresponds to the right-hand and left-hand bumps in Yy in Fig, 8b, Out-
side of the Interval (53) the Mathieu instability does not occur, but between
the two bumps B becomes larger than A2 and we encounter the decay instability
(region 111 of Fig. 2) as evidenced by the central hump in Fig. 8b.

For different pump amplitudes, we obhserve various combinations of the
Mathieu and decay instabilities. Fig. 8c shows a case where A > 0 (since
¥ > gy) and we move from region 1V, for vy = 0, to regions I, IV, IIL, IV, I
and 1V as v| increases up to 2, For gy < g}, as in Fig. 8d, we cannot predict

the sign of A from simple arguments. In general it will depend on the values
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of g1, g2, and vy, but for the parameters of Fig. Bd, it is clear, from the
behavior of both y and Re w, that as v ifucreases from 0 to 2 we pass, succes—
sively, through regions IV, I, II, III, II, [ and IV.

From Fig. 3 it is easy to follow the path through the stability plane
corresponding to the curves of Figs. 5 through 8. For example, fig. 8d cor-
responds to the dotted horizontal line at go = g1/2 shown in Fig. 3d.

I[n all of the discussions of this section, we have used the approximate
solution (42) of the dispersion equation to explain the results obtained nu-~
merically from the exact equation (34). This is justified by the close agree-
ment of the exact and approximate solutions when §; and §, are not too large.
This agreement is illustrated for typical values of the parameters in Fig. 9,
where the solid line corresponds to the the solutions of the exact dispersion
(34) and the dotted line to the approximation (42). Note that in this figure
we have plotted the growth rates for all roots, i.e., those with vy < 0 are also

included.
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TIME DOMAIN BEHAVIOR

Although the stability properties of our basic equations (10) through

(12) are fully described by the frequency domain analysis presented in the
previous two sections, additional physical insight can be obtained by examin-
ing the time domain solutions of these equations. We use a fourth order
Runge~Kutta technique6 to solve the fourth order system (10) through (12),
taking as initial condition a standing ion acoustic wave [f, (0) = f_(0) = 0;
ni(0) = 1; &1(0) = 0]. The integration is done using a step size At = 0.4
(in units of Qk-l) for 256 steps. The result is unchanged when At is taken to
be O.i. We also calculated frequency spectra from these solutions using a fast
Fourier transform7 with 256 sample points. Insofar as the nonlinear mechan-—
isms responsible for saturation of the instability are weakly dependent on
frequency, these spectra are representative of what might be seen in an actual
experimental measurement of the frequency spectrum of the ion or electron den-
sity fluctuations. Of course, the fine details of the spectrum, e.g., the ra-
tios of the various spectral peaks depend somewhat upon the precise initial
conditions, such as the ratio of left-going and right-going ion acoustic waves
and/or Langmuir waves,

Fig. 10 shows the results for a choice of parameters (v = 1.1, vy = -0.88’
g1 = g2 = .346) corresponding to a point just to the right of null 2 in
Fig. 4. Since this is in region III of Fig. 2, the dispersion relation pre-
dicts two modes with equal growth rate and different Re w. The beating of
these two modes causes the modulation in nj(t) shown in Fig. 10a. (The exist-

ence of the two modes is also apparent from the plot of Ini(w)l2 in Fig. 10c.)

The exponential growth of the two modes (following an initial transient per-

iod) is reflected in the plot of loglni' in Fig. 10b.
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In Fig. 11 we show ny(t) for parameters chosen to correspond to the nulls
1, 2 and 3 in Fig. 4. 1In each case there is a modulation but, as expected, no
net growth, When v) = -vy (as in Fig. 1la) we note that (11) through (13)
reduce to

I(fy + £_)/01

"
(@]

(54)

]

8%ni/87 + g = -1(x/2)[£40) + £_(0)]A cos vt
from which it is obvious that ny is a superposition of oscillations at w =1
and w = v}, resulting in the modulation seen in Fig. lla.

In experimental observations, especially in the case of the ionosphere,
the most accessible quantity is the electron density ng,(w) at high frequencies
(of order of the Bohm-Gross frequency), measured, for example, by Thomson
scattering, In Fig. 12 we show the spectral distributions fne(w)lz obtatned
by fast Fourier transform of the direct solutions of (10) through (12) for
equal amplitude pumps g) = gp = .346 with v; = 1.1 and various values of Vo
The locations of the two pumps are indicated with dotted lines and the ampli-
tudes |ne(w)|2 are arbitrarily normalized to the largest value found in this
set, which occurs in Fig. 12g. Of course, the various peaks of the high fre-
quency electron density spectrum just correspond to peaks in the low frequency
ion density spectrum, which is shown, for the same parameters, in Fig. 13;

indeed it follows from (12) that
172
~iwfy(w) = F(e=0) = (Mx/m) " “[A; nj(w~v)) + Xy nj(w=vy)1/4 (55)

For vi = | and v far from -1, as in Figs. 12a, 13a, the spectrum is dominated
by the single pump decay associated with the first pump. As vy approaches ~1

the spectrum becomes modified (Figs. 12b,c and 13b,c). For vy = -1, we are

in region I of Fig. 2, so there is one unstable root for Re w > 0 (and another
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for Re w < 0) in nj(w) and hence four (two coinciding at @ = wy) for ng(w).
For vy = -0.88 (Figs. 12d, 13d) we are in region 1II of Fig. 2 and the two un-—
stable modes (for Re w > 0) in nj(w) result in a splitting of the ny(w) peaks.
As v9 continues to increase (Figs. 12e through 12h and 13e through 13h) the

spectrum of ngo(w) again resembles the single pump decay, with various modifi-

cations in the line shape.
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VI. CONCLUSIONS AND DISCUSSION OF RESULTS

Our study of the effect of a second pump on the parametric instability
growth rate of ion acoustic and Langmuir waves is valid for long wavelength
pumps in a uniform medium, i.e. for L, > Ap > A, where L, is the density gra-
dient scale length, kp is the pump wavelength and A, is the wavelength of the
waves excited by the parametric process.

New effects appear in the case of two pumps because, in addition to the
constant term produced by a single pump, which results in the usual parametric
instabilities, the ponderomotive force contains also an oscillating term of
frequency 4 = wy; - wy. This gives the ion density equation a character simi-
lar to the Mathieu equation, although the differential equation arising here
is of higher order, We find that the interaction between the Mathieu type of
instability and the usual parametric decay instability (we have concentrated
here on the decay instability but similar results hold also for the OTSI) is
strongest when the condition for the decay instability (wj = w + 2 or
vp = 1) and the condition for the Mathieu instability (A = 2Q or v = 2), are
simultaneously satisfied, i.e., when v = -vo = 1. The interaction may be
either constructive or destructive, Constructive interference is exemplified
by the fact that even if both pump amplitudes E; and E, are below the thresh-
old Eg for the single pump decay instability (in fact, even if
Elz + Ezz < ESZ) the Mathieu mechanism can still lead to instability, as il-
lustrated in Fig., 5a, b and 5c. The destructive aspect is illustrated by the
occurre;ce of nulls in Yy as a function of vj or vj, nulls which may occur even
when Ey > Eg, as illustrated in Fig. 4 and Fig. 7b, and which may extend over

a finite interval of v| or v,, as in Fig. 7b. As discussed in Sec. IV, the sta-

bilizing or destabilizing effect of the second pump does not vary monotonically
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with E9, as illustrated in Fig. 6 for E; below the single pump threshold: the
growth rate initially increases with Eg, reaches a maximum and then decreases,
eventually vanishing for sufficiently large E;. 1If, as is sometimes the case,
one wishes to eliminate parametric instabilities, it appears that multiple
pumps could be used if their parameters are appropriately chosen. Note that
the suppression of the instability observed here occurs with coherent (fixed
phase) pumps and hence differs from the use of broadband, randomly phased
pumpss.

It is also important to note the strong dependence of the growth rate on
the parameters. For example Figs. 7a and 9¢ correspond to the same value of
the parameters except for a slight difference in the value of v|. It is ob-
served that in Fig. 7a the immediate neighborhood of vy = =1 corresponds to
region I of Fig. 2 (i.e., only one complex root with v > 0), followed by re~
gion III after a brief transition to region 2 as |62| increases, whereas the
loop in Y around vy = -1 seen in Fig. 9c corresponds to region II followed by
region I1I as |8;| increases.

The solutions of the dispersion equation discussed in section IV were ob-
tained by solving the infinite determinant using Hill's method. However, in
the parameter regime where interesting effects appear, an excellent approxima-
tion is obtained by using a 2 x 2 truncation of that determinant.

Direct solution of the problem in the time domain is used to
corroborate the frequency domain results and shows the modulational effects
associated with multiple roots of the dispersion equation. Moreover, the
Fourier transform of the time domain solutions indicates the spectral line

shapes to be expected for the ion and electron densities, at low and high fre-

quencies, respectively. So far as the spectral lines are concerned, the lar-
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gest effect of the second pump is to diminish their maximum amplitudes as we
approach the nulls of y, but it also results in some fine structure, e.g.
splitting of the lines, appearaunce of satellites, etc.

A direct extension of this work would include damping effects (colli-
sional or Landau). Inclusion of a phenomenological damping term (damping rate
[e) in the fluid equations for the electrons simply replaces w by (w + il,) so
Hill's method of solving the infinite determinantal dispersion equation is
still applicable. Preliminary calculations show no qualitative changes, aside
from the expected diminution of y. When 'y exceeds the ion acoustic frequency
Qk, the earlier calculation1 shows that the threshold with two pumps
can be considerably lower than with a single pump and it would be interesting
to explore the behavior of the growth rates above threshold in that case. An
analysis similar to that carried out here could also be used for any of the
many parametric instabilities associated with magnetized plasmas. For appli-
cations to ilonospheric plasmas, it would be important to include the effects
of density gradients; for example, each pump may give rise to its own decay
instabilities albeit at different altitudes, and these would interact with the
Mathieu type of instabilities examined here. Finally, a nonlinear treatment
of two pump excitation would give a more realistic prediction of the actual

line shapes.
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Fig. 1: Crowth rate vy (upper half) and real frequency w (lower half) of the
ion acoustic and pump idler modes for the single pump excitation.

Points P, A, M are to be used in discussion of Fig. Sa.
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Fig. 2:
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Stability reglons in the plane of the variables A and B defined by
(41). The four roots of the biquadrdatic equation (40) for y = w - v
have the following characteristlcs in the respective regions of the /2
A-B plane: 1) two real roots and two conjugate, purelv imaginary
roots, L[1) two pairs of conjugate, purely imaginarv roots, T11) two
pairs of complex conjugate roots, (V) two pairs of equal and oppo-

site real roots,.




Stability regions in parameter space as obtalned from the approxi-
mate solution (42). The shaded regions indicate the unstable zones
and the Roman numerals correspond to the labelling in Fig. 2. The
dotted line in Fig. 3d is the trajectorv {n this stability plane
corresponding to Fiy. Bd. The parameters nsed are a) vy o= L1,

Vi = 1.2 0b) My o= . 125, vy o= 1.2: ¢©) gy = .29, vy = -1.2;

d) gy o= L3346, vy = L1
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Fig. 5:
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Growth rate Y (upper half) and frequency w (lower half) of the fon

acoustic and pump idler modes in the double resonance region for equal

pump amplitudes g = g2 = g with vi = L.1. In Figs. 5(a), 5(b) and

5(c) the pump amplitudes are below the single pump instabilicy

threshold g < Rg; in Fig. 5(d) g > gg.




*660° = %8 > ¢/0° = 13

pue 1°1 = la yiym sopnijydue dund {enbaun 103 uojBaa ajueuosaiz
atqnop a3yl uj la jo uojldunj e se sapow dund I[P} Pue I}ISNOCIE UO]
ay3l jJo (3rey aamor) m Aduanbaijy pue (jrey iaaddn) A 3jes yimoin

:9 *814




‘g1° = S8  gpge = 1%
pue z°1 = ln y3m sopnijlduwe dund jenbaun 103) uoidsa
JdurUOSAI ITQNOP 3yl ul Ca JO UOIIJUN] B SsE sapow dund pue d13snooe
uor 3yl Jo (Jrey 2amor) m Louasnbsajy pue (jTey iaddn) A 3ier yimois :¢ 814




Fig. 8:

(@] |} b))

Growth rate Y (upper half) and frequencies w (lower half) of the
ion acoustic and pump modes as a function of v| with g] = .346 and

and various values of g, V7 as noted.




etk

|
1
|

Fig. 9:

Comparison of the four solutions of the exact dispersion relation

(34) (solid) and the approximation (42) (dotted) for various choices

of parameters in the double resonance region. The parameters are

(a) g =g, = .346, v) = 1.2; (b) g) = gy = .346, vy = ~1.2;

(C) gl = !3"6, 82 - gl/z’ \)l = 1.1; (d) gz - 81/2' \)2 - —l.l.

™ =

PO + XS S [E .. .
: R




(a) Q

n; ()
(=)
—

) . 80 160 r

(b)

log |n;(t)]
o
i

0 80 160

(c)

-4 -2 0 2 4w

Time and frequency dependence of the fon density nj.

E;; 'Y'\n density ny(t) for g1 = g2 = .346, v| = 1.1, vy = =0,88;
.og|ng(e)| as a function of time for g1 = g2 = 346, vy = 1.1,

vy = =0.88; (c) Power spectrum |nj(w)|® corresponding to Fig. 10(a).
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Fig. 12: Electron density spectrum Ine(w)'2 for gy = g2 = .346, v) = L.1 .

plotted as a function of (w ~ w)/Q for various choices of vj. The
valnes of (w - wy)/Q, corresponding to the two pumps are indicated
by the dotted lines.
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Fig. 12.




o i

"€861 12903150 ‘yor
03 palatuqns ‘s3FeW Y [ ‘SI[EIOW ‘L ‘O § LIONOYS "W W ,,‘SASING JH AQq UOTBaY-4 Je[oq IY3 3o 3urieay druyp,,

€861 "3dag ‘jaeds ' "4 9 ylny ‘s ‘M ‘131U0I0) A ‘4
‘esoqieq " ‘Q . ‘s9iey 3urlesy ewSE[J SNO[BWOUY PUE SNIO] BUSB[4 O] 9yl UT 3SION PTIQAH I3MOT JO SUOTIBAIEQQ,,

‘¢861 taqualdag ‘*qnd 103 3j0u ‘udyy ‘4 ‘4 ‘tutwy °g ‘,,1931EIS)dBg USWEY JO3 SPIOYS3IYL dATIDIAUO) pue [BUOISI[[O),,

€861 12qWaldas 'SPINT4 JO SOTSAYJ 03 PalITmqns
‘sateIoN ‘f "9 pue ajuowI] "9 ‘qUWET ‘W ‘g *,,9OUBUOSITOIAY JBON ID3JJY IATIOWOIIPUOJ Yl JO JOTABYAY,,

‘€861 ‘3Isndny ‘[eTIale|, 1EA[INY JO [BUINOL 01 PIIILWYNS ‘watuoy) xseyN § noy) drfriyg
W suotieatdidalg 9prqie) pPuB SITITAB) PIOTJ WNI[SH YIIm sapedse) uorsi[1o) 431aug y31y jo uoriIdeaaiuj ayj,,
‘¢g61 ‘3Isndny ‘[BLI3IBK Iea[dNN JO [eUINOp

01 Pa311TWQNS ‘waTUOYy ISEN 3§ O0Ipouwy 11aqoy ,,°G6-LH JO uoriewrojsq doai) 1oj suorienbg udissg sarinirisuo),,

€861 3sndny
‘uoriedtiqnd 103 30u ‘e 313 ‘uUuo) qog ,,‘z LIV--1usixj [eproxol 98aeq jo juswirdadxj xa3twy] dung padueapy uy,,

‘¢861 ‘isndny ‘3uriadn N9V ‘razuaig
¢ ‘ 5 1in3y uo siuswriadxy Aroiervqer
*T 'y AQ ,,UOT1II9UUOIIY pue 3duanqan] °siake] 3arqnog suotidnisty 199Yys ud ) '

€861 Isndny ‘°3397 A9y
*sAyd 01 palltugns ‘uay) ‘4 4 ‘rysopr 'H ‘uoikerd °3g 5 ¢, £3IT[1qeISU] urnOI(tlg ayYyl jo uotrieinjeg Juiddexy uoj,,

*(g¢861 ‘isn3ny) ‘uoriedtiynd 103 lou ‘watuoyn
‘N w 4A3111084 juawdoranag 398ae] uorsng weag a[dTiIed Yl JO JINIdNIIS 3Yl uO s3ID3333 uotieipey :ouuzmz:

Amouoxisy 3o siyStyiydty
Juntsodwds uotun [EITWOUOIISY [BUOTIBUISIU] I0F €861 ‘isndny T1ITUCIO) A 4 *,,SOTWRUAPOIIIATY YSTQ UOTIAIIOY,,

€861 1sndny ‘-say -sdydosg ‘anop o3 palrtuqns

‘12zuU233§ *1 Y § uew[aYdn ‘M ¢,9US[NQIN] dTIduUBEN - 9 3IBd ‘SIuswTIadX] UOTIIAUUOISY IUTT PIITH dTIaudel,,

"NA33@ "N A, walsAS 19Indwo) [HD VIJN SY3 UO IPO) UOTIIB[NUIS S[ITIXBJ ITIBISOXIIAY « papunog,,
‘¢g61 Isndny ‘uor1e1rassi|

uoSwWo
*Q°Ud ‘sauof ‘N ,,IVWINS 210ded9ptd VIJN 9Yl UT S3SSOTT IIMOJ UOIIDA[F JO SIUdWIINSEBIN 3urrdileds Yl
"SIJJIVT MITAIY nﬁU,.ﬁmxAS& 031 palitugns qmﬂwmu -Hma=<v

‘BuoM ‘A "V .‘splatd d113ulel 3deyang jeay A19Ar3e[dY Lq sewse[d eiag Y3tH pacnpoad IISeT JO JuUdWUTEBIUO),,

. b N T e FEY Ty vy P

8¥L-9dd

L¥L-9dd

9vL-9dd

Sv.-9dd

v¥L-9dd

£¥L-0dd

<vL-9dd

IvL-0dd

0vL-3dd

6£L4-9dd

8€L-9dd

LEL-9dd

9¢L-Ddd

S¢£L-9dd

veL-9dd

T




‘sateioy ‘r ‘o ¢ cq ‘g ¢ . ‘ *(¥861) Lienuep
[BI0M “f O "P3T2d °Q ‘4 ‘YOTAOTIW ‘r ,‘sdung oml g USATI( SITITIIqeISU] OdTijaweled Jjo sajey :uaouu:

‘€861 ‘19quada(q ‘sdTsAy4 ewseld jo Jeuanor ol paIITWqns aq o3 ¢ Touud)y
*d "D 3 uolIstwpy °"d 'r ,,*A20YS (HW IS4 B 10j I9quny yoey [EITITAD 3ISAT4 94yl jo Apnig drilauweled v,

‘€861 12quadaq
‘uosmeq ‘W' Pue jyriiey °"L°S ,,‘A139W039 20U 319)dTd UT uorixoistq dsny pue Surredss yidag urys uoj,,

‘€861 Ioquadd(] ‘SI91337T MITASY 1ed1sAyg
01 pailluqns 3Q 01 ‘Bunay)y ‘g °d B uom ‘A ‘V ,“sonep Jtnudue] JO 9SAB[[0)-J[9S [BUOTSUWT(J ddI1YL,,

‘€861 J9quadag ‘uoiferd °3
"D W 4A31711Qe3ISU] 3uria3ledS uInoT[lig pale[nurls 3yl Aq USATIQ SABM OTISNOJY UO] ayl JO SOTSAyY ayl,,

€861 19quedaQ ‘uosmeq ‘w'[ pue 33aquam g ,‘pPIal4g
drielsolauden e 01 Aronbr(qp Butiededory soaey druosolaufel Juollg Aq UOTIBIS[SIDY pue SUTIEIH BWSE[ .,

) €861 ‘Iaquadag ‘erydioperiyq ‘Furidasutdug uorsng uo wnisoduds yigr ayl e
pa1udsaxd 5q 03 ‘uuo) ‘M "y Y new 'y ‘L ‘SuU0ISAIT{ 'V "W 1, X010B3Y I10411}{ wapuel B jo dn-3Ielg [eIITU],,

*€861 I2qUIAON ‘MaT1AdY [edT1SAydoag jo
[BUINOf 01 PI11TUQNs ‘uew(aya9 "M § [9ZUd81§ 'Y ,,°199Yg [eainap d131sudel e ul sapoj Jutiea] paxadliag,,

. "£86T IaquanoN ‘myn Y N
pur Jueydy "M "W “ur] "L ‘v ,,‘I91317duy uOoI10754) 9ABM MOTS V JO YIPIMpPURg pPUB ADUITIDT333 JBIUTTUON,,

‘€861 ‘J1aquanoN ‘uo1ieixISSIQ g Yd
‘eanweNeN ) ,,‘spiatd d1lauden paleays ur AIT[IQeISU] dIN[4 JO UOIIBZI[IqEIS PUE S1D3333 d133UTy,,

‘€861 4390320 ‘uuo) M Y , ‘€861
‘aunp ‘3jeuq (euld 300 03 340d3ay suoirjedyiddy uoLsny 404 S|eLA3}RK UOLIRALIDY MOT UO JJ0ddy [aued,

. (€861 ‘13q0320Q)
£5914994 "V M B uuewyny ‘) N Csewse[d ded[dnuowrdyl pautjuo) L[[edt11doufel jo sdtisouerq taseq,,

‘€861 4940320 *°S3337 *S3y ‘039 03 paLuwgns
39 03 “333Yd3tdd "1 4 ,‘uOLIRLPRY D14JBWO L) |BUOUNY JO UOLIRUBUIY By} pue uoLs4adsig J13SLALIR|3Y,

. . . ‘€861
‘13q031>0 “dIr 03 pAilruqgns 3q o3 ‘esoqieg ‘( "d . SIWEUAPOIIdITT opnitie]-ydiy Joj ardidutray A3iaug uy,,

“€861 ‘43qol1dQ ‘jiedg 4 pue
duIoyl ‘Y ,,‘SnIoyl ewse{d O] 3yl Jo AITUTIDIA 3yl ul A3IT[1qelisu] uol1l0[d4) uo] 10§ 3duapiag :[ 1adeAoa,,

£9.-9dd

29.-0dd

19.-9dd

09.-9dd

6S2-3dd

8SL-0dd

LS.-9dd

95.-9dd

SSL-9dd

vSL-9dd

£S.-9dd

¢S.-9dd

18£-9dd

0SL-9dd

6¥.L-0dd







